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Published Online: 6 Feb 2004 – c© Società Italiana di Fisica / Springer-Verlag 2004

Abstract. It is imperative that lattice QCD serve to develop our understanding of hadron structure and,
where possible, to guide the interpretation of experimental data. There is now a great deal of effort directed
at the calculation of the electroweak form factors of the nucleon, where for example, measurements at
Jefferson Laboratory have recently revealed surprising behaviour in the ratio GE/GM . While, for the
present, calculations within the framework of lattice QCD are limited to relatively large quark mass, there
has been considerable progress in our understanding of how to extrapolate to the chiral limit. Here we
report the results of the application of these techniques to the most recent form factor data from the
QCDSF Collaboration. The level of agreement with all of the form factors, for Q2 below 1 GeV2, is already
impressive.

PACS. 12.38.Gc Lattice QCD calculations – 11.30.Rd Chiral symmetries – 13.40.Gp Electromagnetic
form factors – 14.20.Dh Protons and neutrons

1 Introduction

The electromagnetic form factors of the nucleon provide a
fundamental constraint for any theoretical description of
the structure of the nucleon [1]. Even though they have
been studied experimentally for more than 50 years, recent
experiments at Jefferson Lab [2] have revealed surprising
new behaviour in the ratio GE/GM for the proton. In
addition, there are a range of other new results on the
neutron electric and magnetic form factors [3] – this is an
exciting and rapidly developing field.

In this context it is vital that lattice QCD, our only rig-
orous method of solving non-perturbative QCD, be used
to inform our understanding of this data and the vari-
ous models of hadron structure that are used to describe
it. There was a relatively long hiatus in calculations of
nucleon form factors in lattice QCD after the pioneering
work of Leinweber and collaborators in the early 90’s [4,
5,6]. However, the activity has intensified in the last few
years [7,8,9]. In spite of this activity, limitations in com-
puter speed mean that we are currently limited to lattice
simulations at quark masses a factor 5-10 higher than the
physical values and these calculations are currently made
in quenched approximation (QQCD).

If one is to compare these state of the art simulations
with experiment, it is necessary to make an extrapolation
as a function of quark mass to the physical region [10,
11]. This extrapolation is made non-trivial by the non-
analytic behaviour as a function of mq which follows from
the fact that chiral symmetry is dynamically broken in

QCD. Until recently the absence of data has meant that
efforts at chiral extrapolation of form factors has been
focussed on baryon magnetic moments [12,13,14,15] and
charge radii [16,17]. The focus on non-analyticity [18] of
hadron electromagnetic properties has inspired consider-
able investigation of the formal constraints in both full
QCD and QQCD [19,20,21,22,23].

The practical issue is then how to incorporate these
formal chiral constraints into a practical chiral extrapo-
lation, given that the radius of convergence of the for-
mal expansion dictated by chiral perturbation theory is
rather small [24]. In the case of the nucleon mass, where
there is extremely accurate data in full QCD from the CP-
PACS Collaboration [25], one can formally demonstrate
the model independence of the extrapolation procedure
[24,26,27]. For the magnetic moments the data is only now
improving to the point where the model independence of
the choice of finite range regulator [28] can be examined
[12]. In the case of the form factors this is not yet possible.

The procedure employed in this paper is to draw on the
earlier phenomenological experience with chiral extrapo-
lations of the magnetic moments and charge radii, taking
simple phenomenological functional forms which build in
the correct non-analytic behaviour and any other asymp-
totic constraints that are known [29]. For the present the
accuracy of the lattice data is not such that it could dis-
criminate between different functional forms for the Q2-
dependence of the nucleon form factors. In particular, it
cannot yet address the JLab issue of whether GE/GM

decreases as Q2 increases. We therefore parametrize sep-
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arately the isoscalar and isovector lattice data, at a given
value of mq, or mπ, as a dipole and then extrapolate the
dipole mass as a function of mπ, building in the appropri-
ate chiral constraints. Clearly this simple approach can be
systematically improved as the lattice simulations become
capable of making a better discrimination between possi-
ble functional forms. For the present we shall see that our
relatively simple approach already produces quite impres-
sive results.

2 Extrapolations

It is well known [1] that the Q2-dependence of the nucleon
Sachs electromagnetic form factors (with the exception of
the neutron electric form factor Gn

E) are described in first
approximation by a dipole form

G(Q2) =
G(0)

(1 + Q2/Λ2)2
. (1)

Here Λ is the dipole mass and the charge form factor of
the proton satisfies Gp

E(0) = 1, while Gp
M (0) = µp and

Gn
M (0) = µn are the proton and neutron magnetic mo-

ments. As explained in the Introduction, we will use this
phenomenological fact to construct a simple but effective
extrapolation formula.

To isolate the chiral behaviour of the form factors we
rearrange them into isovector and isoscalar combinations:

Gv = Gp − Gn (2)

and
Gs = Gp + Gn, (3)

respectively. These also display a dipole-like Q2-
dependence but with different dipole masses and magnetic
moments.

To extrapolate lattice QCD results for the electromag-
netic form factors from the large pion masses at which they
are calculated to the physical regime, we extract dipole
masses and magnetic moments from the lattice data and
then extrapolate these as a function of mπ.

Following [13,14], one can use a Padé approximant
which builds in both the correct chiral non-analytic be-
haviour as mπ → 0 and the correct asymptotic behaviour
as mq → ∞ to extrapolate the neutron and proton mag-
netic moments

µi(mπ) =
µ0

1 − χi

µ0
mπ + cm2

π

. (4)

The chiral coefficients for the isovector and isoscalar mo-
ments are χv = −8.82 and χs = 0 respectively and µ0 and
c are fitting parameters, to be determined by the lattice
data.

In order to build a suitable extrapolating function for
the Q2-dependence of the form factors, we use the connec-
tion between the mass parameter in a dipole form factor
and the corresponding mean-square radius. For the isovec-
tor magnetic form factor the mean square radius is

〈r2〉v
M = − 6

Gv
M (0)

dGv
M

dQ2 |Q2=0 . (5)

Fig. 1. Fit to values of the isovector electric form factor
dipole mass extracted from lattice data with lattice spacing
a = 0.051 fm. The physical value predicted by the fit is also
indicated

Fig. 2. Fit to values of the isovector magnetic form factor
dipole mass extracted from lattice data with lattice spacing
a = 0.051 fm. The physical value predicted by the fit is also
indicated

Comparing this to the dipole of (1), we find an expression
relating the dipole mass to

〈
r2

〉v

M
,

(Λv
M )2 =

12
〈r2〉v

M

. (6)

The chiral behaviour of the magnetic mean squared radius
is known from chiral perturbation theory [30]

〈
r2〉v

M
∼ χ1

mπ
+ χ2 ln(

mπ

µ
). (7)

The constants χ1 and χ2 are given by

χ1 =
g2

AmN

8πf2
πκv

, (8)

χ2 = −5g2
A + 1

8π2f2
π

, (9)
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Fig. 3. Linear fit to values of the isoscalar electric form factor
dipole mass extracted from lattice data with lattice spacing
a = 0.051 fm. The physical value predicted by the fit is also
indicated

Fig. 4. Linear fit to values of the isoscalar magnetic form factor
dipole mass extracted from lattice data with lattice spacing
a = 0.051 fm. The physical value predicted by the fit is also
indicated

where gA = 1.27 is the axial coupling constant and fπ =
93 MeV is the pion decay constant, mN = 940 MeV is
the nucleon mass and κv ≈ 4.2 is the isovector anomalous
magnetic moment of the nucleon (in the chiral limit).

Earlier experience with nucleon properties as a func-
tion of quark mass has suggested that, as a consequence of
the finite size of the source of the pion field, chiral loops are
strongly suppressed for mπ > 0.4 GeV [31]. Thus in order
to build an effective chiral extrapolation formula one needs
to modify the non-analytic terms given above so that they
are suppressed above this mass. For guidance as to an
appropriate parametrization of this suppression we have
evaluated the pion loops that give rise to the non-analytic
chiral terms using the Cloudy Bag Model (CBM) [32,33,

Fig. 5. Fit to values of the isovector magnetic moment ex-
tracted from lattice data with lattice spacing a = 0.051 fm.
The physical value predicted by the fit is also indicated

Fig. 6. Fit to values of the isoscalar magnetic moment ex-
tracted from lattice data with lattice spacing a = 0.051 fm.
The physical value predicted by the fit is also indicated

34]. The results led us to replace (7) with the expression

〈
r2〉v

M
∼ χ1

mπ

2
π

arctan(µ/mπ)+
χ2

2
ln(

m2
π

m2
π + µ2 ) , (10)

which ensures the correct chiral behaviour at low-mπ but
suppresses it at values larger than µ.

Substituting this functional form into (6) and intro-
ducing a linear dependence on m2

π to give the expected
behaviour at large quark mass, we get the following ex-
pression for the dipole mass associated with the isovector
magnetic form factor

(Λv
M )2 =

12(1 + A1m
2
π)

A0 + χ1
mπ

2
π arctan(µ/mπ) + χ2

2 ln
(

m2
π

m2
π+µ2

) .

(11)
Here A0 and A1 are unknown parameters, adjusted to fit
the lattice data.
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Fig. 7. The magnetic form factor for the proton extrapolated
from lattice data with lattice spacings a = 0.093 fm (single
line), a = 0.068 fm (dash-dot line) and a = 0.051 fm (dotted
line) and compared to experimental results

We can perform a similar analysis to find an expression
for the isovector electric form factor dipole mass Λv

E , com-
bining the non-analytic chiral behaviour predicted by χPT
at low m2

π with the slowly varying behaviour observed in
lattice QCD at large masses. Using the equivalent of (5)
for the electric form factor, we can relate the dipole mass
to the mean charge radius by

(Λv
E)2 =

12
〈r2〉v

E

. (12)

The chiral behaviour of the isovector mean charge radius
is like that of the magnetic radius but with no 1/mπ term
[30],

〈
r2〉v

E
∼ χ2 ln(

mπ

µ
) . (13)

Combining this chiral behavior with a linear dependence
on m2

π produces the following predicted form for the
isovector electric form factor dipole mass,

(Λv
E)2 =

12(1 + B1m
2
π)

B0 + χ2
2 ln( m2

π

m2
π+µ2 )

, (14)

where B0 and B1 are general fitting parameters.
Having isolated the chiral non-analytic behaviour to

the isovector form factors, we expect that the isoscalar
dipole masses should be roughly linear in m2

π – as observed
in CBM results.

The forms chosen to represent the dipole masses as a
function of mπ are able to reproduce the predictions of
the CBM [34] very well.

3 Results

The QCDSF Collaboration [7] has recently reported
QQCD results for the isovector and isoscalar nucleon elec-
tric and magnetic form factors calculated at different Q2

Fig. 8. The magnetic form factor for the neutron extrapolated
from lattice data with lattice spacings a = 0.093 fm (single
line), a = 0.068 fm (dash-dot line) and a = 0.051 fm (dotted
line) and compared to experimental results

Fig. 9. The electric form factor for the proton extrapolated
from lattice data with lattice spacings a = 0.093 fm (single
line), a = 0.068 fm (dash-dot line) and a = 0.051 fm (dotted
line) and compared to experimental results

values and pion masses and for three different lattice spac-
ings (β = 6.0, 6.2 and 6.4). Using this data, with the
scale set using the Sommer method (r0 = 0.5fm [35]),
we have plotted the form factors Gv

M , Gs
M , Gv

E and Gs
E ,

calculated on the lattice as a function of Q2, at each pion
mass and lattice spacing, and fit each graph with a dipole
form, finding a best-fit dipole mass and magnetic moment.
Plots of these best-fit dipole masses and magnetic mo-
ments against m2

π for the lattice spacing a = 0.051 fm are
shown in Figs. 1, 2, 3 and 4.

The electric and magnetic isovector dipole masses are
fitted with functions of the form (11) and (14), respec-
tively. The scale µ = 0.41 GeV was chosen to give the
best simultaneous fit to the lattice data for both the elec-
tric and magnetic isovector form factors at all three lattice
spacings. We observe that the curves fit the data well and
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Fig. 10. The electric form factor for the neutron extrapolated
from lattice data with lattice spacings a = 0.093 fm (single
line), a = 0.068 fm (dash-dot line) and a = 0.051 fm (dotted
line) compared to experimental results

predict physical results significantly different from those
obtained by a naive linear extrapolation. In both cases, the
form of the fitting functions greatly restricts the physical
value, resulting in a small error. Finally, we note that the
electric and magnetic isoscalar dipole mass plots are fitted
with linear functions in m2

π, because of the absence of any
leading non-analytic behaviour in this case.

The magnetic moment plots are extrapolated using the
Padé approximant, (4). The resulting errors in the physi-
cal magnetic moments dominate over errors in the dipole
mass and are the main source of error in our results for
the physical magnetic form factors. Similar fits were pro-
duced for lattice results at lattice spacings a = 0.068 fm
and a = 0.093 fm.

Using the extrapolated physical values for the dipole
masses and magnetic moments, we reconstruct the electric
and magnetic form factors for the proton and neutron as
a sum of two dipoles in Q2. Figures 7, 8, 9 and 10 show
the electric and magnetic form factors for the proton and
neutron extrapolated from that lattice data at each of
the three lattice spacings (a = 0.093 fm, a = 0.068 fm
and a = 0.051 fm) compared to the experimental data
from [36].

Except for the case of the neutron electric form factor
(which is very sensitive because it is the result of a cancel-
lation between Gv

E and Gs
E which yields a relatively small

result) our extrapolated curves match the experimental
points very well, particularly for Gp

E and Gp
M . Although

our curve for Gn
E is almost twice as big as the experimen-

tal values, it does describe the correct shape but peaks at
slightly too high a value of Q2.

4 Conclusion

We have proposed a relatively simple approach to the ex-
trapolation of lattice QCD data for the nucleon electro-
magnetic form factors. The data from QCDSF has been

parametrized by a simple dipole form, with the dipole
mass parameter taken to be a function of mπ which incor-
porates the leading non-analytic behaviour of chiral per-
turbation theory. For the isoscalar case, where there is no
leading non-analytic behaviour, the extrapolation is a sim-
ple linear function of m2

π, while for the isovector case we
have used a functional form suggested by studies based on
the cloudy bag model, which suppress the chiral behaviour
for pion masses larger than 400 MeV.

The level of agreement between the empirical Q2 de-
pendence of the proton electric form factor and the proton
and neutron magnetic form factors is impressive. This is
quite remarkable when one considers that the data is based
on quenched approximation and is extrapolated from a
light quark mass a factor of twenty above the physical
mass. This is only possible because of the remarkable fact
that pion loops are suppressed by finite size effects once
the pion Compton wavelength is smaller than the size of
the source – empirically, mπ > 0.4 GeV. The extrapola-
tion of the data has, of course, been performed using chiral
coefficients appropriate to full QCD.

One of the main open questions in the analysis con-
cerns the neutron electric form factor, which will always
be a challenge given that it vanishes at Q2 = 0 – as a re-
sult of the cancellation between the isoscalar and isovector
contributions. In addition, we observe that there appears
to be some residual β dependence in the value of the nu-
cleon magnetic moments and this is the major ambiguity
in the current reconstruction of the proton and neutron
magnetic form factors. It is encouraging that the results
for β = 6.4, corresponding to the smallest lattice spac-
ing, is in the best agreement with the experimental data.
Future lattice simulations will undoubtedly clarify this is-
sue and also give us data at lower values of the quark
mass. It would also be valuable to have full QCD sim-
ulations (rather than QQCD) to ensure that there is no
unanticipated systematic difference. Most importantly, as
the accuracy of the data and the range of Q2 covered in-
creases, we can extend the present analysis by employing
more complicated fitting functions which should allow us
to test the behaviour of properties such as GE/GM against
experiment.
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